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Abstract

An analytical/numerical method for solving the problem of non-stationary heat di�usion in multilayered slabs is
presented. This is an extension of previous methods that have been used to solve transient heat di�usion problems
in one-dimension. In this work, two-dimensional semi-in®nite media are considered and double integral transforms

are used to obtain the corresponding transfer matrix form from the governing partial di�erential equations.
Numerical techniques are used to compute the overall transfer matrices of the system and to numerically invert
them in order to obtain transient results. Di�culties encountered with the numerical operations and ways to

circumvent these are presented. The developed methodology has been applied to two-layered con®gurations. 7 2000
Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Heat conduction in composite media has been the

topic of intensive research in recent years. A theor-
etical understanding of the problem of heat conduc-
tion in composite media is of importance in diverse

®elds, such as oil shale retorting, reinforced lami-
nates, hydrodynamics of strati®ed ¯uids and protec-
tive coating of turbine blades, to name a few.

Transient heat conduction has been dealt with in
several ways. Baker-Jarvis et al. [1] used the Greens
function technique to analytically obtain the transi-
ent temperatures in a one-dimensional composite

medium. Of course, a host of numerical methods

based on the ®nite di�erence and ®nite element

schemes are also available. The governing partial

di�erential equation for transient heat conduction is

essentially parabolic in nature. In [2,3], a hyperbolic

equation is considered to solve the heat conduction

problem. The problem is treated as a wave propa-

gation problem with heavy damping. This technique

has been applied to transient conduction in semi-in-

®nite media. However, the application of this tech-

nique to composite media is limited. In [4],

Yalamanchili and Chu provide a method wherein

the use of a variational approach bordering on the

Finite Element Method is used to model heat trans-

fer in composite media. This method also provides

approximate solutions for non-linear boundary con-

ditions of the linear problem. In [5], the transient

two-dimensional conductive and radiative heat trans-

fer problem is analyzed. But the work that is of

relevance to the present exposition is that of Bou-

zidi and Duhamel [6], where the eigenvalue problem

associated with thermal di�usion problem is solved.
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The concept of transfer matrix has been used in

that work, in conjunction with ®nite integral trans-

forms to analyze transient heat conduction in a

one-dimensional composite layered system.

In the work presented here, transient heat con-

duction of a semi-in®nite composite media has been

investigated. The medium is axisymmetric in nature

and the problem can be reduced to two dimensions.

Double integral transforms (Fourier and Hankel

transforms) are employed to reduce the governing

partial di�erential equations (PDEs) to a set of

ordinary di�erential equations (ODEs). The double

integral transform technique used here has parallels

that are used by Cetinkaya and coworkers [7±11] in

the wave propagation context. In these works,

double integral transforms were employed to analyze

transient stress wave propagation in sets of bi-

layered medium composed of materials with di�er-

ent mechanical impedance properties.

The governing PDE for a single slab is ®rst con-

sidered. This equation is non-dimensionalized and

then double integral transforms are used to convert

the PDEs into a system of ODEs. Then the bound-

ary conditions are applied and a transfer matrix

relating the ¯ux and temperatures on both surfaces

of the slab is derived. Using this transfer matrix for

the individual slabs, the transfer matrix for the

structure consisting of many slabs is assembled, and

the temperatures and ¯uxes at any desired location

can be obtained after a double inversion of the cor-

responding transformed quantities. A numerical

scheme based on the Direct Global Transfer

Method which avoids the problem of exponential

dichotomy [11] is presented. Numerical simulations

have been performed on two di�erent systems to

study transient temperature distributions in layered

media.

It was pointed out by a reviewer that the work on
integral transform techniques applied to heat transfer
problems was reported ®rst in [12]. The theory behind

the application of integral transformations is postu-
lated in great depth in the book by Ozisik [13] where
several di�erent transformations are given depending

on the situation. Some numerical aspects are discussed
in [12], however, there are far severe numerical
instabilities that arise when the number of layers is

unlimited and we address those issues in this paper.
The comments of the reviewer is acknowledged.

2. Formulation

2.1. De®nitions

A layer is de®ned here as a plate that is homo-

geneous and isotropic and that has ®nite thickness, but
extends to in®nity in the other two dimensions. It is
hence convenient to express the governing equations in

cylindrical coordinate system. A bi-periodic set is a
structure in which two layers of di�erent thermal and
geometric properties are brought together in perfect

mechanical contact. Each bi-periodic set may be com-
posed of strongly and weakly conducting layers, which
shall be referred to as Layer A and Layer B, respect-
ively. A system considered here consists of N bi-per-

iodic sets, again, with perfect bonding between them.
The number of layers in a system can be unlimited. An
interface is a plane where, either two bi-periodic sets

meet or a free surface exists. The interfaces are num-
bered starting from the top most free surface down to
the bottom free surface. The system shown in Fig. 1

has four bi-periodic sets and ®ve interfaces and the
state of the system at any coordinate location consists
of the temperature and ¯ux.

Nomenclature

[C ] direct global sti�ness matrix
F ¯ux in the scaled coordinate system
H thickness of the layer

N number of bi-periodic layers in the system
T temperature in the scaled and unscaled coor-

dinate system

�Tset� transfer matrix relating states in the top and
bottom layers

f ¯ux in the unscaled coordinate system

h depth inside the layer where the states are to
be computed

(r, z ) unscaled coordinate system
s Laplace transform variable

t time

Greek symbols

a di�usivity of the medium
�a� matrix �Tset�N
Z scattering constant

m Hankel transform variable
o non-dimensional frequency
rCp heat capacity

�r, z� scaled coordinate system
t scaled time
t� thermal impedance
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2.2. Governing equations

The problem considered here is axisymmetric in
nature and the governing equation for a single layer,
in cylindrical coordinates, is given by:

@ 2T

@r 2
� 1

r

@T

@r
� @

2T

@z 2
� 1

a
@T

@ t
�1�

where a � k=�rCp�, k is the conductivity, rCp is the
heat capacity and a is the di�usivity of the layer. The

temperature T�r, z, t� is a function of radial and axial
coordinates, r and z, and of time t and zero initial con-
dition is assumed throughout the medium. The bound-

ary conditions are given by:

T�r, 0, t� � TT, ÿk@T
@z
�r, 0, t� � FT

T�r, H, t� � TB, ÿk@T
@z
�r, H, t� � FB

�2�

where F is the ¯ux, H is the thickness of the layer and
the subscripts `T' and `B' stand for the top and bottom

surfaces of the layer, respectively. At this point, it is
useful to introduce the scalings r � r=H, z � z=H and
t � ta=H 2 to reduce Eqs. (1) and (2) to the dimension-
less form given by:

@ 2T

@r 2
� 1

r
@T

@r
� @

2T

@z 2
� @T

@t

T�r, 0, t� � TT, ÿ k
@T

@z
�r, 0, t� � HFT

T�r, 1, t� � TB, ÿ k
@T

@z
�r, 1, t� � HFB �3�

Applying the Laplace transform with respect to time
and a zero-order Hankel transform with respect to r
in Eq. (3) and incorporating the initial condition, the
following ODE in the variable z is obtained:

d 2 �T 0

dz 2
�
ÿ
m 2 � s

�
�T 0 �4�

where s and m are the Laplace and Hankel transform

variables, respectively. The overline indicates that
Laplace transformation has been performed on the
non-dimensional time variable t and the superscript `0'

indicates that a Hankel transform of order zero has
been applied to the variable r: The solution to Eq. (4)
is

�T 0 � A ebz � B eÿbz �5�

where b �
�������������
m 2 � s

p
, and A and B are the constants of

integration. Eq. (5) can be di�erentiated with respect

to z to yield

k
@ �T 0

@z
� kb ebzAÿ kb eÿbzB �6�

Fig. 1. A composite layered structure.

M.F.A. Azeez, A.F. Vakakis / Int. J. Heat Mass Transfer 43 (2000) 3883±3895 3885



The boundary conditions in Eq. (3) are also trans-
formed and used to eliminate the constants of inte-

gration in Eq. (6) and yield the relation:

�
�T 0

�f 0

�
B

�
24 cosh b sinh b

b
HA

kA

b kA

HA
sinh b cosh b

35� �T 0

�f 0

�
T

� �Tlayer

�� �T 0

�f 0

�
T

�7�

where �f 0 � ÿ �F 0=H is the same as the negative of the

transformed ¯ux in the actual unscaled coordinate.
The subscripts `B' and `T' refer to the bottom and top
of the layer, respectively. The advantage of such a

matrix representation will become evident when two
layers are brought in contact in the transfer matrix for-
mulation for the bi-periodic set. The matrix �Tlayer� is
the transfer matrix relating the states on the top and
bottom surfaces of a single layer. Next, a similar trans-
fer matrix for a bi-periodic set is derived.

2.3. The transfer matrix of a bi-periodic set

The bi-periodic set is composed of layers A and B,
and the transfer matrix for these layers are used to

construct the transfer matrix of the set. The transfer
matrix of Layer A, termed �TA�, is obtained by directly
substituting the thermal and geometrical properties of
the layer in the matrix �Tlayer� (see Eq. (7))(

�T 0
A

�f 0A

)
B

�
24 cosh b sinh b

b
HA

kA

b kA

HA
sinh b cosh b

35( �T 0
A

�f 0A

)
T

� �TA �
(

�T 0
A

�f 0A

)
T

�8�

where the inner subscript `A' is used to indicate that

the Layer A is considered. While deriving the transfer
matrix for Layer B, care should be taken to maintain
the consistency in the Hankel and Laplace transform

variables. Now, the scalings r � r=HA, z � z=HB and
t � taA=H

2
A are applied to the governing equations as

was done in the derivation of �Tlayer� and the transfer

matrix for Layer B is obtained as:(
�T 0

B

�f 0B

)
B

�
24 cosh g sinh b

g
HB

kB

g kB

HB
sinh g cosh g

35( �T 0
B

�f 0B

)
T

� �TB �
(

�T 0
B

�f 0B

)
T

�9�

where the inner subscripts de®ne the layer, whereas the
outer subscripts denote the top `T' or bottom `B' of
each layer.

The transfer matrix of a bi-periodic set can be de-
rived from �TA� and �TB� by imposing the conditions of

continuity in ¯ux and temperature at the interface
where the layers meet. The conditions are � �T 0

A�B �
� �T 0

B�T and � �f 0A�B � � �f 0B�T, and yield the transfer matrix

for a bi-periodic set.

�Tset � �

266666664

cosh g cosh b� tb
g sinh b sinh g

1

CB

�
cosh g sinh b

bt
� sinh g cosh b

g

�
CB

�
bt sinh b cosh g� g sinh g cosh b

�
cosh g cosh b� g

btsinh g sinh b

377777775
The constants t� � CA=CB and Z � aA=aB are referred

to as the thermal impedance and scattering constant, re-
spectively. By dropping subscripts, the matrix
equations relating the three states at the top and bot-
tom of a bi-periodic set can now be expressed as�

�T 0 �f 0
	T

i�1� �Tset �
�

�T 0 �f 0
	T

i
�10�

where the subscript `i' refers to the state at the top of
the ith bi-periodic set and the superscript `T' denotes

the transpose.

2.4. Obtaining the states of a composite system at the
interfaces

As mentioned previously, a layered composite sys-
tem, in general, consists of N bi-periodic sets as shown
in Fig. 1. The states at the ®rst and the last interfaces

can be obtained from Eq. (10) by successive multipli-
cations.n

�T 0
N�1 �f 0N�1

oT

� �Tset �N�
n

�T 0
1
�f 01

oT

�11�

If any two of the four quantities �T 0
1,

�T 0
N�1, �f 01 and

�f 0N�1 are known, the other two can be solved for.
Here, it is assumed that the temperatures at the ®rst
and the last interfaces are prescribed. The variables �f 0i
can then be solved in terms of the temperatures as fol-

lows:

�f 01 �
�T 0
N�1 ÿ a11 �T 0

1

a12

�f 0N�1 � a21 �T 0
1 �

a22
a12

�
�T 0
N�1 ÿ a11 �T 0

1

�
�12�

where aijs are the entries of the 2� 2 matrix �Tset�N:
Once the states at the top and bottom free surfaces

of the system are known, the states at the internal

interfaces can be obtained using Eq. (10). This method
is called the Method of Direct Multiplication. These
successive multiplications introduce severe errors in the
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computation. This is because of the fact that the
matrix Tset contains hyperbolic sines and cosines

whose arguments can take large values. As a result,
the entries of �Tset� can become large and the entries of
�Tset�N can exceed computer precision. Severe trunca-

tions and round-o�s occur and this situation is termed
as exponential dichotomy [14].
An alternate scheme based on the Direct Global

Transfer Matrix method developed in [15] is presented
below. As will be shown in numerical examples later,
this method virtually eliminates the problem of expo-

nential dichotomy. In this approach, termed as
DGTM method, instead of solving for the temperature
and ¯ux at di�erent interfaces successively, a single
state vector fsg of the unknown quantities is formed

and is solved in a single step. The boundary conditions
are assumed to be speci®ed temperatures at the ®rst
and last interfaces of the system. One de®nes at this

point the following vectors:

fsg �
�
f1 T2 f2 T3 � � � TN FN FN�1

	
�
f
	 � �T1 T1 0 0 � � � 0 TN�1 0

	
where fsg and f f g denote the unknown vector of in-
ternal states, and the known applied temperature
``force'' vector, respectively. Now, relating the

unknown and known quantities for each periodic set
separately, and combining them together into a single
matrix equation, a new global transfer matrix is termed

in the following form:

�C�fsg � �f	 �13�
where [C ] is given by

�C� �

2666666666666664

ÿt12=t11 1=t11 0 0 0 0 0 � � � 0 0 0
ÿt22=t21 0 1=t21 0 0 0 0 � � � 0 0 0
0 ÿt11 ÿt12 1 0 0 0 � � � 0 0 0
0 ÿt21 ÿt22 0 1 0 0 � � � 0 0 0
0 0 0 ÿt11 ÿt12 1 0 � � � 0 0 0
0 0 0 ÿt21 ÿt22 0 1 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 0 0 0 0 � � � t11 t12 0
0 0 0 0 0 0 0 � � � t21 t22 ÿ1

3777777777777775
�14�

and tijs are the entries of the 2� 2 matrix �Tset�:
Once the vector f and the matrix [C ] have been com-

puted, the unknown state vector s can be obtained by
a single matrix inversion:

fsg � �C�ÿ1�f	 �15�

The dimension of the matrix [C ] is (N � N ),
and if many bi-periodic layers are considered, the

matrix inversion (Eq. (15)) becomes computationally
challenging. However, the accuracy of the resulting
vector of transformed states, fsg, is guaranteed.

2.5. Obtaining the states of a composite system inside
the layers

The methods discussed in earlier sections can be

used to compute the transformed temperatures and
¯uxes at di�erent interfaces of the composite system.
It is essential to know the distribution of tempera-

ture in the composite structure as a whole. Hence,
it is desired to compute the states inside the layers
and not just at interfaces between layers. Once the

states of the system at the interfaces have been com-
puted, the computation of the transformed tempera-
ture and ¯ux inside the layers is a straight forward
task, at any axial distance for a given value of s

and m (the Laplace and Hankel variables, respect-
ively).
Considering the mth bi-periodic set, if the states

are to be computed at the sections xx (see Fig. 1),
the following arguments hold. The temperature and
¯ux at the mth interface f �T 0

m
�f 0m gT have already

been solved for. A ®ctitious layer, Layer C, having
the thermal properties of Layer A and of thickness h
is assumed to exist (see Fig. 1). A transfer matrix

�Th� can be derived for this layer in a manner similar
to the derivation of the transfer matrix for Layer B.
The matrix �Th�, which gives the states at section xx,
is given by:

8<: �T 0
h

�f 0h

9=; � �Th �
(

�T 0
m

�f 0m

)

�
24 cosh g sinh b

g
h
kA

gkA

h sinh g cosh g

35( �T 0
m

�f 0m

)
�16�
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where g � �h
�������������
m 2 � s

p
�=HA: The state at a depth h

inside Layer B of the mth bi-layered set is (section yy

of Fig. 1), can be computed as:8<: �T 0
h

�f 0h

9=; � �T 0h�
(

�T 0
inter

�f 0inter

)

�
24 cosh g sinh b

g
h
kB

gkB

h sinh g cosh g

35�TA �
(

�T 0
m

�f 0m

)

� �Th �
(

�T 0
m

�f 0m

)
�17�

where g � �h
������
m 2

p
�saA=aB�=HA:

3. Transient responses of temperature and ¯ux in the

composite medium

In earlier sections, it was shown how the double-

transformed temperatures and ¯uxes are computed free
of numerical instabilities. In order to obtain them in
the physical domain, the states previously computed

have to be numerically inverted. To this end, a double
integral inversion needs to be performed. Let the trans-
formed temperature or ¯ux at any location z of the

layered medium be represented as �c
0�m, z, o�, where

s � jo and m are the Laplace and Hankel variables, re-
spectively, and o denotes frequency. The response in
the physical domain is then expressed by the following

double inversion:

c�r, z, t� �
�1
0

mJ0�mr�
�1
ÿ1

eÿjot �c
0�m, z, o� do dm

�18�
where J0 is the Bessel function of order zero. The vari-
able r is the scaled radial distance at which the state c
is desired. The Laplace variable s is replaced by jo to
make the computational task easier, as standard Fast
Fourier Transform (FFT) routines can be used to

evaluate the inner integral in Eq. (18). For compu-
tational purpose, the limits of integration has to be
®nite.

The kernel of the integral in Eq. (18) dies out at
®nite values of and, and hence, the time response can
be approximately expressed with the ®nite integral,

c�r, z, t� �
�mf
0

mJ0�mr�
�of

ÿof

eÿjot �c
0�m, z, o� do dm

�19�
where of and mf are the values of o and m at which
the kernel's contribution is small. The integrals in the

approximation in Eq. (19) can be evaluated numeri-
cally to yield the transient temperatures and ¯uxes at

the desired locations.
The following is the typical procedure of computing

the time responses of the temperatures and ¯uxes. The

boundary conditions T1�r, t� and T5�r, t� have to be
converted into the scaled coordinate system �r, t�:
Then double integral transformations have to be

applied and the quantities �T 0
1�m, o� and �T 0

5�m, o� have
to be computed at discrete values of m and o: Then
the matrix �Tset� is evaluated at these �m, o� combi-

nations and stored. Using �T 0
1�m, o�, �T 0

5�m, o� and
�Tset�, the other unknown temperatures and ¯uxes at
the various interfaces are computed using the DGTM
method and stored in memory. When a state �c

0�m, z,
o� is desired inside the layers, it can be computed
using the methods mentioned earlier and they are also
stored. The time response computation is done in two

steps. First, a Inverse Fast Fourier Transform (IFFT)
is applied to the variable �c

0�m, z, o� for each of the
discrete values of m to obtain c0�m, z, t� which shall be

referred to as time modes. Then the inverse Hankel
transformation is computed at a given r value using a
seven-point quadrature integration scheme which goes

by the name DAVINT. This is more than su�cient
because the time modes are not oscillatory in nature.
The key in performing the inversions is to select the
proper limits of integration. The only way to select

these limits is to look at the values of the kernel for
various �m, o� values and carefully ®x the limits at a
point where the kernels contribution is negligible.

In the next section, an example is considered to illus-
trate the method and the numerical problems that may
be encountered. Also, a comparison of the DGTM

and the Direct Multiplication Method is provided.

4. Numerical simulations

For the numerical simulations considered in this

paper, we look at two systems named Systems I and
II. System I consists of eight layers of Al2O3, while
System II consists of eight layers with layers of Al2O3

and ZrO2 alternating. The thickness of each layer is 1
mm. The properties of the materials are; Al2O3: k �
20:934 W/cm/8C, rCp � 1:779� 106 W s/(K m3),
ZrO2: k � 4:1868 W/cm/8C, rCp � 8:303� 105 W s/(K

m3). For these parameters, the values of �t�, Z� are (1,
1) for System I and (5, 2.33) for System II.
A simulation is performed on System II to illustrate

the occurrence of exponential dichotomy and to obtain
the transient responses. The speci®ed temperature dis-
tributions on Interfaces 1 and 5 are shown in Fig. 2.

The goal is to ®nd the transient temperature (T3) and
¯ux ( f3) at the third interface. Both the DGTM and
the Direct Multiplication methods can be used. In
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order to determine the limits of integration of the
double integral inverse transformation in Eq. (19), the

kernel has to be evaluated at various m and o values.
This is where the problem arises. If Direct Multipli-
cation is used, exponential dichotomy sets in for values

of m greater than 5. In Figs. 3 and 4, the onset of ex-
ponential dichotomy while using the Direct Multipli-
cation method is illustrated. The DGTM method for

the same setting is free of numerical errors. The vari-
ables �T 0

3 and �f 03 are evaluated for a m range of 0.0001±
15 and o range of 0±15. Based on the simulations, the

limits of integration were set to mf � 5 and of � 5: The
time mode plots and the transient response of the tem-
perature and ¯ux at the third interface are shown in
Fig. 5. As can be seen in the ®gures, the kernel for the

Hankel Inversion (Fig. 5(b) and (d)) die out at m � 0:9
itself. At that value of m, the Direct Multiplication

Method is stable.
Referring to Fig. 5(c), it can be noted that to begin

with the ¯ux (note that f is the negative of the actual

¯ux) is positive, meaning that heat is transferred from
the ®fth to the third interface. This is obvious because
the temperature at the ®fth interface is higher. At 200

s, steady state is reached. Then at 500 s when the ther-
mal loading is removed, heat transfer occurs rapidly
from the third to the ®fth interface, and a reversal of

the ¯ux occurs.
Now, for the speci®ed temperatures on the top and

bottom surfaces as shown in Fig. 6, numerical simu-
lations are performed on Systems I and II. The tem-

Fig. 2. (a) The time dependence of T1 and T5, the temperatures at the ®rst and last interface. Mag = 1700 for T1 and 2500 for T5,

(b) radial dependence of T1 and T5, (c) FFT of the time component of T1, (d) Hankel transform of the radial component of T1, (e)

FFT of the time component of T5, (f) Hankel transform of the radial component of T5:

M.F.A. Azeez, A.F. Vakakis / Int. J. Heat Mass Transfer 43 (2000) 3883±3895 3889



Fig. 3. (a) Transformed temperature �T 0
3 vs. o at m � 12 using direct multiplication, (b) �T 0

3 at m � 12 using DGTM method, (c)

transformed ¯ux �f 0
3 at m � 12 using direct multiplication, (d) �f 0

3 at m � 12 using DGTM method.

Fig. 4. (a) Transformed temperature �T 0
3 vs. m at o � 1:5 using direct multiplication, (b) �T 0

3 at o � 1:5 using DGTM method, (c)

transformed ¯ux �f 0
3 at o � 1:5 using direct multiplication, (d) �f 0

3 at o � 1:5 using DGTM method.
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perature distribution contours at various time instances
are shown in Figs. 7 and 8. The temperature distri-
bution plots of Systems I and II are given for the same

range, for the sake of comparison. In order to obtain
these plots, the variables were computed for the fol-
lowing range of variables. A o range of 0±5 with 100
points and a m range of 0.0001±5 with 50 points are

considered. Also, the temperatures are computed for a
r range of ÿ5±5 mm with 20 points and at z locations
at intervals of 0.1 mm.

It is evident from Figs. 7 and 8 that for System II,
the heat di�usion from the upper to the lower surface
is smaller than in System I. The heat is dissipated
more freely in the radial direction. As a result, high

Fig. 5. (a) Transient response T3�t� at r � 0, (b) time modes of T3�t� vs. t for m values of 0.001, 0.3, 0.6, 0.9, (c) transient response

f3�t� at r � 0, (d) time modes of f3�t� vs. t for values of 0.001, 0.3, 0.6, 0.9.

Fig. 6. The time dependence (a), and the radial dependence (b) of the temperature speci®ed temperatures T1 and T5: Mag = 2700F

and R � 5 for T1 and Mag = 1700F and R � 25 for T5:
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temperatures are localized to the boundary layers of
the system. This is due to the presence of weakly con-

ducting layers sandwiched in between the strongly con-
ducting layers. This lack of heat di�usion in the
system with layers of di�erent thermal conductivity

can be used in the design of thermal coatings used for

thermal protection of turbine blades. Similar localiz-
ation phenomena of stress waves in layered media

were reported by Cetinkaya and co-workers [7±11]. It
was shown that when the layers of the system possess
large di�erences in mechanical impedances, the axial

wave transmission is impeded and energy localization

Fig. 7. Temperature contour plots of System I at t � iDt� 1, Dt � 6 s, i � 0, 1, . . . ,14:
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in certain layers occur. In the above works obtaining

the stresses were computationally involved, because in
the wave propagation context, the time modes were
highly oscillatory for high wave numbers �m�: But in
the current problem, this was not an issue, as the time

modes for high m values are smooth.

5. Discussion

We now provide some remarks regarding the techni-
cal details and the limitations of the described compu-
tational methodology. These remarks are necessary in

order to apply correctly the double integral numerical

Fig. 8. Temperature contour plots of System II at t � iDt� 1, Dt � 6 s, i � 0, 1, . . . ,14:
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technique outlined in this work and deprive it of nu-

merical instabilities.
It was mentioned earlier that if any two quantities

(temperature, ¯ux) are prescribed, then the outlined

method can be used to yield the temperatures at any
desired location. But due to the parabolic nature of

the problem, it is essential that the variables should
be bounded. As an example, it is incorrect to pre-
scribe the temperature and the ¯ux at the ®rst inter-

face and try to solve for the states elsewhere. This is
because of the fact that the temperature and ¯ux at
the last interface is not bounded externally and there

could be many solutions to the Boundary Value Pro-
blem; in that case, numerical instabilities will invari-

ably aid in creating unrealistic solutions at the last
interface. However, the temperature at the ®rst inter-
face and the ¯ux at the last interface can be pre-

scribed or vice versa.
In Ref. [12], it is noted that the transfer matrix

method by direct multiplication can be applied to an

unlimited number of layers. This is, however, true only
when the parameter t� is very close to unity. When t�

is away from unity, exponential dichotomy sets in even
when a few layers are considered. In this case, the
DGTM method can be used. But the trade o� is the

computational time. But relatively speaking, the com-
putational time is not as high as in the wave propa-
gation context [11], where the time modes had to be

computed for a very high m values, over a ®ne grid,
and were also highly oscillatory in nature. In the heat

di�usion problem, the time modes are not oscillatory,
and hence, the �o, r� grid on which the temperatures
are computed need not be ®ne. Hence, computation-

ally, the heat di�usion problem is less challenging than
the corresponding wave propagation problem. The
choice of the DGTM method or Direct Multiplication

Method depends on the parameter of the system and
computational time limits.

The inde®nite integral in Eq. (18) is replaced by the
de®nite integral of Eq. (19) under the assumption that
the kernel dies out at high values of m and o: But also
the problem of exponential dichotomy sets in, wherein
severe numerical errors are introduced in the compu-

tation of the matrix �Tset� because of exponential terms
involving m: The use of the DGTM formulation
against the direct multiplication method delays the

onset of exponential dichotomy to a great extent. It is
observed that at some critical value of m, termed mcr,
numerical errors start to set in for the Direct Multipli-

cation Method. In the case of a system containing few
bi-periodic layers, the value of mcr is higher near the

region of applied boundary conditions. At regions
away from where the boundary conditions are applied,
the value of mcr is much lower. But the kernel of the

integral dies out at a value of m lesser than mcr: Hence,
this value of m is set as the upper limit of integration

of the Hankel Inversion Integral. It would be erro-
neous to evaluate the kernel beyond this value of m,
for the need of improved accuracy, as unwarranted nu-
merical errors may set back the computations.
The errors in the Direct Multiplication Method can

be reduced to a certain extent as follows. If the state at
the fourth interface in Fig. 1 is to be computed, it can
be obtained by means of successive multiplications as

f �T 0
4

�f 04 gT � �Tset�3f �T 0
1

�f 01 gT: We can alternately
compute the state vector as f �T 0

4
�f 04 gT � �Tset�ÿ1�

f �T 0
5

�f 05 gT: The latter would help in reducing numeri-

cal instabilities in this method.
We note that the formulation and the results given

above were only for speci®ed temperature or ¯ux on
the top and bottom surface of the system. The same

method can also be applied to systems with other
kinds of mixed boundary conditions. For example, a
convective boundary condition can be prescribed or

there could be convective layers sandwiched between
layers. Suppose there is a convective stream with a
free stream temperature T1 on the ®rst interface. A

transfer matrix can be derived relating T1, f1 and
T1, f1, and the rest of the method can be applied as
described above. Radiative boundary conditions can

also be approximated as convective boundary con-
ditions and solutions can be obtained iteratively.
In the numerical simulations of the previous section,

the matrix �Tset� is not evaluated at m � 0 but at a

small initial value. This is because of the fact that the
matrix �Tset� is singular to computer precision at m � 0
and o � 0: Alternatively, the matrix can be evaluated

starting at small o and starting from m � 0: But this
will a�ect the inverse Fast Fourier Transform compu-
tations.

Finally, we note that in the numerical simulations,
the state variables were evaluated on a ®ne grid of m
values. This is actually unnecessary. The time modes
of the temperatures and ¯uxes (for example, see

Fig. 5(b) and (d)) vary very smoothly with m, and in
addition, the use of a seven point integration scheme,
can interpolate very accurately the kernel for the evalu-

ation of inverse Hankel integral.
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